刚认识的女孩发个早怎么回复,女生发了个早我回什么刚认识的(女生回复个早我回什么) 居然可以这样

admin

八字精批十年大运八字合婚
刚认识的女孩发个早怎么回复,女生发了个早我回什么刚认识的(女生回复个早我回什么)  居然可以这样 美容养生销售话术 电视剧推荐 销售话术  第1张刚认识的女孩发个早怎么回复,女生发了个早我回什么刚认识的(女生回复个早我回什么)  居然可以这样 美容养生销售话术 电视剧推荐 销售话术  第2张
大师努力掐算中请稍后...

总结!函数的基本性质

1奇偶性

(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。

如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。

注意

刚认识的女孩发个早怎么回复,女生发了个早我回什么刚认识的(女生回复个早我回什么)  居然可以这样 美容养生销售话术 电视剧推荐 销售话术  第3张

1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:

1 首先确定函数的定义域并判断其定义域是否关于原点对称;

2 确定f(-x)与f(x)的关系

3 作出相应结论:

若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;

若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数

(3)简单性质:

①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;

②设 f(x),g(x)的定义域分别是D1 ,D2,那么在它们的公共定义域上:

奇+奇=奇,奇 奇=偶,偶+偶=偶,偶 偶=偶,奇 偶=奇

2单调性

(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);

注意

1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)

(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。

(3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射g : x→u=g(x) 的象集:

①若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数;

②若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。

(4)判断函数单调性的方法步骤

利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:

1 任取x1,x2∈D,且x1<x2;

2 作差f(x1)-f(x2);

3 变形(通常是因式分解和配方);

4 定号(即判断差f(x1)-f(x2)的正负);

5 下结论(即指出函数f(x)在给定的区间D上的单调性)。

(5)简单性质

①奇函数在其对称区间上的单调性相同;

②偶函数在其对称区间上的单调性相反;

③在公共定义域内:

增函数 增函数 是增函数;

刚认识的女孩发个早怎么回复,女生发了个早我回什么刚认识的(女生回复个早我回什么)  居然可以这样 美容养生销售话术 电视剧推荐 销售话术  第4张

减函数 减函数 是减函数;

增函数 减函数 是增函数;

减函数 增函数 是减函数。

3最值

(1)定义:

最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。

最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。

注意

1 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M;

2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M)。

(2)利用函数单调性的判断函数的最大(小)值的方法:

1 利用二次函数的性质(配方法)求函数的最大(小)值;

2 利用图象求函数的最大(小)值;

3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

4周期性

(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数;

(2)性质:①f(x+T)= f(x)常常写作 若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为

版权属于: 自由随风-天行健,君子以自强不息;地势坤,君子以厚德载物

发表评论

表情:
评论列表 (暂无评论,24人围观)

还没有评论,来说两句吧...